Optimal Trajectory Planning for Flexible Mobile Manipulators under Large Deformation Using Meta-heuristic Optimization metods
نویسندگان
چکیده
Abstract: In present paper, a point to point optimal path is planned for a mobile manipulator with flexible links and joints. For this purpose, a perfect dynamic modeling is performed for mobile manipulators considering large deformation in links, shear effects, elastic joints, effect of gravitation, and non-holonomic constraints. To study large deformation of links, non-linear relation of displacement-strain and Green’s strain tensor are used. Optimal path is planned based on direct methods and applying meta-heuristic optimization methods. In order to get an optimal path profile, maximum load carried by manipulator and minimum transmission time are considered as the objective functions for optimization problem. To provide the parameters of optimization problem, parametric optimization problem is solved by using Harmony Search (HS) and Simulated Annealing (SA) efficient methods. In order to investigate the efficiency of the proposed method, simulation studies are performed considering two-link flexible manipulator with wheeled base. The results indicate that the method proposed has a suitable power and performance when facing dynamics non-linear system. Moreover, the results of path planning for manipulators by small and large deformation models are also compared. The effect of flexibility in joints is studied when planning a point to point path.
منابع مشابه
Optimal Trajectory of Flexible Manipulator with Maximum Load Carrying Capacity
In this paper, a new formulation along with numerical solution for the problem of finding a point-to-point trajectory with maximum load carrying capacities for flexible manipulators is proposed. For rigid manipulators, the major limiting factor in determining the Dynamic Load Carrying Capacity (DLCC) is the joint actuator capacity. The flexibility exhibited by light weight robots or by robots o...
متن کاملPlanning and Control of Two-Link Rigid Flexible Manipulators in Dynamic Object Manipulation Missions
This research focuses on proposing an optimal trajectory planning and control method of two link rigid-flexible manipulators (TLRFM) for Dynamic Object Manipulation (DOM) missions. For the first time, achievement of DOM task using a rotating one flexible link robot was taken into account in [20]. The authors do not aim to contribute on either trajectory tracking or vibration control of the End-...
متن کاملOptimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance
Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...
متن کاملOptimal Path Planning for Flexible Redundant Robot Manipulators
Vibration is one of the most important resources of error in motion of tip of flexible robot manipulators. Although much work has been done in the design of controllers for flexible manipulators to follow a specified tip trajectory, it has been done a little work in trajectory planning itself. For redundant robot manipulators, trajectory planning can be accomplished with the aim of optimizing s...
متن کاملOptimal Trajectory Planning for Minimum Vibration of Flexible Redundant Cooperative Manipulators
The optimal path planning for two flexible cooperating manipulators carrying a solid object on a prescribed tip trajectory has been studied using kinematic resolution. The formulation has been derived using the Pontryagin minimum principle that results in a two-point boundary value problem. Also, a numerical technique based on converting the abstract optimization to parametric optimization prob...
متن کامل